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1 Introduction.

In a recent Monthly note, Saidak [6], improving on a result of Hayes [1], gave
Chebyshev-type estimates for the number R(y) = Rf (y) of representations of
the monic polynomial f(x) ∈ Z[x] of degree d > 1 as a sum of two irreducible
monics g(x) and h(x) ∈ Z[x], with the coefficients of g(x) and h(x) bounded in
absolute value by y.

Here, we do not distinguish the sum g(x)+h(x) from h(x)+g(x), and when-
ever we write that a monic polynomial p(x) in Z[x] is “irreducible”, we mean
irreducible over Q. We observe that Saidak’s argument with slight modifications
gives that, for y sufficiently large,

c1y
d−1 < R(y) < c2y

d−1,

where c1 and c2 are constants that depend on the degree and the coefficients
of the polynomial f(x). In this note, we give a proof that the number R(y) is
asymptotic to (2y)d−1, i.e.,

lim
y→∞

R(y)
(2y)d−1

= 1.

In fact, our approach implies that there is a constant c3 depending only on d
such that if y is sufficiently large, then

R(y) = (2y)d−1 + E, where |E| ≤ c3y
d−2 log y.

2 Preliminaries.

For functions r(y) and s(y), we write r(y) = O(s(y)) if there is a constant C > 0
such that |r(y)| ≤ Cs(y) for all sufficiently large y. If the constant C depends on
a value d or on the coefficients and degree of a polynomial f(x), we use instead
Od or Of , respectively.
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First, we state the following lemma which implies that the probability that
a monic polynomial in Z[x] of given degree whose second coefficient is fixed
is reducible is 0 (that is, the density of reducible polynomials with bounded
coefficients approaches 0 as the bound on the coefficients goes to infinity).

Lemma 1. Let d > 1 be an integer and fix an integer gd−1. For each y ≥ 2,
let ry denote the number of d-tuples of integers (gd−1, gd−2, . . . , g1, g0) satisfying
−y ≤ gi ≤ y for i ∈ {0, 1, . . . , d− 1} such that the polynomial

xd + gd−1x
d−1 + · · ·+ g1x + g0

is reducible. (So, in particular, ry = 0 if y < |gd−1|.) Then ry = Od(yd−2 log y).

In order to prove Lemma 1, we modify an argument of Pólya and Szegö [5,
Pt. VIII, Ch. 5, no. 266], and we use an inequality that is a known consequence
of Landau [2] and simple properties of Mahler measure [3, 4].

The Mahler measure, M(p), of a polynomial p(x) =
∑k

j=0 pjx
j in Z[x] is

M(p) = exp
(∫ 1

0

ln |p(e2πit)| dt

)
.

Mahler showed that for 0 ≤ j ≤ k, |pj | ≤
(
k
j

)
M(p) and remarked that M(p) is

multiplicative. Landau showed that 1 ≤ M(p) ≤ (p2
k + p2

k−1 + · · · + p2
1 + p2

0)
1
2 .

From these, we deduce the following inequality which we state as our second
lemma.

Lemma 2. Let g(x) be a polynomial in Z[x] of degree d of the form

g(x) = gdx
d + gd−1x

d−1 + · · ·+ g1x + g0

such that g(x)=a(x)b(x), where a(x) and b(x) are in Z[x]. Let a(x) take the
form

a(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0.

Then for 0 ≤ l ≤ m, al satisfies

|al| ≤
(

m

l

)
(g2

d + g2
d−1 + · · ·+ g2

1 + g2
0)

1
2 .

Proof of Lemma 1. We remind the reader that if g(x) ∈ Z[x] factors in Q[x] as
a product of two polynomials of degree at least 1, then g(x) factors in Z[x] as
a product of two polynomials of degree at least 1. Now, let g(x) ∈ Z[x] be a
reducible, monic polynomial of degree d > 1 such that all of its coefficients are
in absolute value ≤ y and gd−1 is fixed as in the lemma. Then there exist two
monic polynomials a(x) and b(x) ∈ Z[x] of degree ≥ 1 such that g(x) = a(x)b(x).
Let us further take

deg(a) = m ≥ n = deg(b),
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where m + n = d. Note that there are at most bd
2c possibilities for the pair

(m,n). We write a(x) and b(x) in the following forms:

a(x) = xm + am−1x
m−1 + · · ·+ a1x + a0

b(x) = xn + bn−1x
n−1 + · · ·+ b1x + b0.

Since the number of monic polynomials we are considering with g0 = 0 is
Od(yd−2), it is sufficient to show that the number of d-tuples

(am−1, am−2, . . . , a1, a0, bn−1, bn−2, . . . , b1, b0)

as above with a0b0 6= 0 is equal to Od(yd−2 log y).
We consider a(x) which has degree m ≤ d − 1. A similar argument applies

to b(x). For 1 ≤ l ≤ m− 1, Lemma 2 implies

|al| ≤
(

m

l

)
(12 + g2

d−1 + · · ·+ g2
1 + g2

0)
1
2 ≤

(
d− 1
bd−1

2 c

)
((d + 1)y2)

1
2 = Cdy,

where Cd depends only on d. Thus, the number of (d− 4)-tuples

(am−2, . . . , a1, bn−2, . . . , b1)

is Od(ym−2yn−2) = Od(yd−4).
Observe that when we multiply a(x) by b(x), since they are both monic

polynomials, the value the coefficient gd−1 takes will result from the sum am−1+
bn−1. Also recall that gd−1 is fixed, so determining am−1 also determines bn−1.
Hence the number of 2-tuples (am−1, bn−1) is O(y).

Since a0b0 = g0, we have 1 ≤ |a0b0| ≤ y. Thus, the number of 2-tuples
(a0, b0) is bounded by

4
∑
q≤y

∑
δ|q

1 = 4
∑
δ≤y

∑
q≤y

δ|q

1 ≤ 4
∑
δ≤y

y

δ
= O(y log y),

where the 4 appears above since each of a0 and b0 may be either positive or
negative. Combining this estimate with the above, the lemma follows.

Remark. If we remove the condition in Lemma 1 that gd−1 is fixed, then
ry = Od(yd−1 log y). This is a direct consequence of a more general theorem of
van der Waerden [7].

3 Theorem.

Theorem 1. Let f(x) be a monic polynomial in Z[x] of degree d > 1. The
number R(y) of representations of f(x) as a sum of two irreducible monics g(x)
and h(x) in Z[x], with the coefficients of g(x) and h(x) bounded in absolute value
by y, is asymptotic to (2y)d−1.

3



Proof. Let f(x) be a given monic polynomial in Z[x] of degree d > 1 that takes
the form

xd + fd−1x
d−1 + · · ·+ f1x + f0.

We are looking for pairs of monic polynomials g(x) and h(x) in Z[x] with co-
efficients bounded in absolute value by y such that f(x) = g(x) + h(x). With-
out loss of generality, let deg(g) > deg(h), and observe that deg(g) = d and
1 ≤ deg(h) ≤ d− 1.

If y ≥ 1+max{|f0|, |f1|, . . . , |fd−1|}, then the total number of pairs of monic
(not necessarily irreducible) polynomials g(x), h(x) is

d−2∑
T=0

T∏
t=0

(2byc+ 1− |ft|) = (2y)d−1 +Of (yd−2) ∼ (2y)d−1.

We claim that almost all of these pairs of monic polynomials g(x), h(x) con-
sist of two irreducible polynomials. Thus, R(y) ∼ (2y)d−1. We in fact establish

R(y) = (2y)d−1 +Od(yd−2 log y)

by showing that there are Od(yd−2 log y) pairs of monic polynomials (g(x), h(x))
where at least one of g(x) or h(x) is reducible. Once a particular g(x) or h(x)
is fixed, it determines the other. We count the ways g(x) might be reducible
separately from the ways h(x) might be reducible.

First, we count the ways g(x) might be reducible. We have that deg(g) = d.
Since h is monic and deg h ≤ d − 1, the equation f(x) = g(x) + h(x) implies
that either gd−1 = fd−1 or gd−1 = fd−1 − 1, so in each of these cases, gd−1 is
fixed. Since the coefficients of g(x) are bounded in absolute value by y, we have
met all the conditions for Lemma 1. Therefore we have that there are at most
Od(yd−2 log y) monic reducible polynomials g(x).

Next, we count the ways that the monic polynomial h(x) might be reducible.
Suppose we have that deg(h) = d−1. Since the coefficients of h(x) are bounded
in absolute value by y, by our remark at the end of the previous section, we have
at most Od(yd−2 log y) monic reducible polynomials h(x) of degree d− 1 ≥ 1. If
deg(h) < d − 1, we note that our remark also implies that the number of ways
h(x) can be reducible is Od(yd−2 log y).

Thus,

R(y) =

(
d−2∑
T=0

T∏
t=0

(2byc+ 1− |ft|)

)
+Od(yd−2 log y) +Od(yd−2 log y)

=
(
(2y)d−1 +Of (yd−2)

)
+Od(yd−2 log y)

= (2y)d−1 +Od(yd−2 log y),

where we have used that any constant depending only on the coefficients and
degree of f(x) is small compared to log y when y is sufficiently large. The result
follows.
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