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1 Introduction
We begin with a simple example. Let m be a positive integer. Let

N = (11 · 13 · 17 · 19 · 10) m + 15.

The right-most digit of N is 5. Thus, N is composite, and if we replace any digit of N , other than
the right-most digit, with a different digit, then the new number obtained will be divisible by 5
and, hence, be composite. On the other hand, if we replace the right-most digit of N by a different
digit, then we obtain one of N ± j where j ∈ {1, 2, 3, 4, 5} and each of these is easily seen to be
composite. Thus, N has the property that if we replace any one of its digits with an arbitrary digit,
the number we obtain is composite.

Constructing examples of N having the above property is simplified by the fact that changing
digits (arbitrarily many) of a natural number N , other than the right-most digit, results in a number
divisible by gcd(N, 10). Thus, if we allow gcd(N, 10) 6= 1, then we can easily construct examples
of N with the property that replacing any one of its digits with an arbitrary digit results in a
composite number.
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Our goal is to address here the more difficult issue of constructing such N but with the restric-
tion gcd(N, 10) = 1. For example, the number N = 212159 has this property. In other words,
every number in the set,{

d12159, 2d2159, 21d159, 212d59, 2121d9, 21215d : d ∈ {0, 1, 2, . . . , 9}
}

is composite. In fact, it can be checked that 212159 is the smallest composite natural number,
coprime to 10, such that if we replace any one of the digits of its decimal expansion with a d ∈
{0, . . . , 9}, then the number created by this replacement is composite. We prove the following:

Theorem 1. There are infinitely many composite natural numbers N , coprime to 10, with the
property that if we replace any digit in the decimal expansion of N with d ∈ {0, . . . , 9}, then the
number created by this replacement is composite.

After establishing Theorem 1, we will examine a similar problem in which the insertion of
any one digit into a composite natural number N results in a number that is composite. As in
the previous paragraph, we are interested in N that are coprime to 10. For example, the number
N = 25011 has this property. In other words, every number in the set,{

d25011, 2d5011, 25d011, 250d11, 2501d1, 25011d : d ∈ {0, 1, 2, . . . , 9}
}

is composite. The number 25011 is the smallest composite natural number, coprime to 10, such
that if you insert any digit d ∈ {0, . . . , 9} anywhere in its decimal expansion, then the number
created by this insertion is composite. Analogous to Theorem 1, we establish the following:

Theorem 2. There are infinitely many composite natural numbers N , coprime to 10, with the
property that if you insert any digit d ∈ {0, . . . , 9} anywhere in the decimal expansion of N , then
the number created by this insertion is composite.

Another problem that could be considered along similar lines is whether there are infinitely
many composite numbers such that when you remove any one digit, then the number remains
composite. This problem is easier, however, as can be seen by considering a number consisting of
a string of 3’s. Further, a string of 1’s of the form (1015k+10− 1)/9, where k is an arbitrary positive
integer, provides a further slightly less obvious example.

We turn to some open questions. We were able to obtain analogous results to Theorem 1 and
Theorem 2 for all bases b < 12, but do analogous results hold for all bases? Do there exist infinitely
many composite numbers N satisfying the conditions of both Theorem 1 and Theorem 2? Are there
infinitely many primes p that are composite for every replacement (or insertion) of a digit? Does
there exist a k0 such that for every positive integer k ≥ k0 there is a composite number N with
exactly k digits having the property of Theorem 1 (or Theorem 2)? Do there exist infinitely many
composite numbers N that remain composite when any two digits (not necessarily consecutive)
are changed (or inserted)? Based on heuristics, we conjecture that the answers to all of the above
questions except the last is in the affirmative.

Acknowledgment: The first two authors note that Theorem 1 was established some years ago by
the latter two authors. As it never appeared in print, the first two authors reconstructed a proof and
included Theorem 2 which, as we will see, follows rather easily from the argument for Theorem 1.
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2 Proof of Theorem 1
We give a construction of an infinite sequence of composite natural numbers N satisfying the
conditions in the theorem. We write the decimal expansion of N as

N = dn−1dn−2 . . . d1d0, di ∈ {0, . . . , 9}, n ≥ 1, dn−1 6= 0.

We also express N in the form

N =
10n − 1

9
+ M,

where M is a fixed natural number to be determined and n is a large natural number. Observe that
our last expression for N is equivalent to

N = 11 . . . 11︸ ︷︷ ︸
n-many 1’s

+M

where the number 11 . . . 11 is a string of n digits that are 1. To establish the theorem, we will find an
infinite arithmetic progression of natural numbers n, a fixed natural number M , and a finite set of
primes P , such that when we replace any digit in the decimal expansion of N with x ∈ {0, . . . , 9},
then the number created by this replacement is divisible by at least one of the primes in P . We
suppose throughout that n is large enough to imply that the left-most digit of N is 1.

Let N (k)(x) be the number that is obtained by replacing the digit dk of the decimal expansion
of N with x ∈ {0, . . . , 9}. For example, if N = 212159 = d5d4d3d2d1d0, then N (2)(3) = 212359.
Since M is fixed, there exists a non-negative integer K ≤ n − 1 such that dk = 1 for all k ≥ K.
We first consider these large values of k. For these k, we have that N (k)(x) takes the form

N (k)(x) =
10n − 1

9
+ M + (x− 1) · 10k.

Observe that if
n ≡ 0 (mod 3)

M ≡ 1 (mod 3)

x ≡ 0 (mod 3),

then N (k)(x) is divisible by 3 since, in this case,

N (k)(x) =
10n − 1

9
+ M + (x− 1) · 10k

≡ 0 + 1 + (−1) (mod 3).

Thus, the conditions n ≡ 0 (mod 3) and M ≡ 1 (mod 3) imply that for large k if we replace dk

with x ∈ {0, 3, 6, 9}, then we obtain a composite number N (k)(x).
Similarly, we observe that if

n ≡ 0 (mod 6)

M ≡ 0 (mod 7)

x ≡ 1 (mod 7),
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then N (k)(x) is divisible by 7. Thus, for large k we know that our original N is necessarily
composite and that if we replace dk by x = 8, then we obtain the composite number N (k)(x).

Combining the above, we see that if

n ≡ 0 (mod 6) and M ≡ 7 (mod 21)

and if, for an arbitrary k ≥ K, we replace dk in N with any digit in {0, 1, 3, 6, 8, 9}, then the
number N (k)(x) obtained is divisible by either 3 or 7.

To address the remaining cases of N (k)(x) for x ∈ {2, 4, 5, 7} when k is large, we will use the
following.

Definition. A finite system of congruences x ≡ ai (mod mi), 1 ≤ i ≤ t, is called a covering of
the integers if each integer satisfies at least one congruence in the system.

As an example, we note

x ≡ 0 (mod 2)

x ≡ 1 (mod 3)

x ≡ 3 (mod 4)

x ≡ 5 (mod 6)

x ≡ 9 (mod 12)

is a covering of the integers. In the way of notation, for a prime p and an integer a not divisible by
p, we use ordp(a) to denote the order of a modulo p, that is the least positive integer k such that
ak ≡ 1 (mod p).

Lemma 1. Let N and M be natural numbers such that

N =
10n − 1

9
+ M,

where N has the decimal expansion

N = dn−1dn−2 . . . d1d0, di ∈ {0, . . . , 9}, n ≥ 1, dn−1 6= 0.

Let K be a non-negative integer ≤ n− 1 such that dk = 1 for k ∈ {K, K + 1, . . . , n− 1}. For a
fixed x ∈ {0, . . . 9}, suppose we have distinct primes p1, . . . , pt, each > 5, for which

(i) there exists a covering of the integers

k ≡ bi (mod ci), 1 ≤ i ≤ t,

where ci = ordpi
(10),

(ii) n ≡ 0 (mod lcm(c1, . . . , ct)),

(iii) M is a solution to the system of congruences

M ≡ −(x− 1) · 10bi (mod pi), 1 ≤ i ≤ t.
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Then, for each k ∈ {K, K + 1, . . . , n− 1},

N (k)(x) =
10n − 1

9
+ M + (x− 1) · 10k

is divisible by at least one of the primes pi where 1 ≤ i ≤ t.

Proof. Suppose the conditions in the lemma hold. Let k ∈ {K, K+1, . . . , n−1}. By (i), there is an
i ∈ {1, . . . , t} such that k ≡ bi (mod ci). Since ci = ordpi

(10) and n ≡ 0 (mod lcm(c1, . . . , ct)),
we have pi | (10n − 1)/9. Hence,

N (k)(x) =
10n − 1

9
+ M + (x− 1) · 10k ≡M + (x− 1) · 10bi (mod pi).

From (iii), we deduce N (k)(x) ≡ 0 (mod pi), completing the proof.

Set
P0 = P3 = P6 = P9 = {3}, P1 = P8 = {7}.

For x ∈ {2, 4, 5, 7}, let Px denote a set of primes, if it exists, as in Lemma 1 so that N (k)(x) is
divisible by some prime from Px for each k ∈ {K, K + 1, . . . , n − 1} provided (ii) and (iii) hold
for some covering as in (i). For primes p 6∈ {2, 5}, we define c(p) = ordp(10). For x ∈ {2, 4, 5, 7},
we write the covering system in (i) as

k ≡ b(x, p) (mod c(p)), p ∈ Px. (1)

To establish Theorem 1, we will take n in the definition of N so that it is divisible by the least
common multiple of the numbers in the set

9⋃
x=0

{c(p) : p ∈ Px}.

We will also take M so that the various congruences

M ≡ 7 (mod 21)

M ≡ −(x− 1) · 10b(x,p) (mod p), where x ∈ {2, 4, 5, 7} and p ∈ Px,
(2)

simultaneously hold. It is clear that we can find infinitely many n as above, but we need our choice
of coverings as in (1) and prime sets Px to be such that (2) has a solution. We justify that this is
possible with explicit sets Px and coverings as in (1).

To obtain a set of primes Px and a covering as in (1), we make use of the tables of factorizations
of 10c − 1 in [1] to determine, for a given positive integer c, the set of primes p such that c =
ordp(10). For the purposes of finding a covering as in (1), each such p corresponds to a congruence
of the form k ≡ b (mod c) that we can use, where we have some freedom on how to choose b.
Observe that, given c, there may be more than one prime p for which c = ordp(10). Choosing
b differently for different p allows us to use two or more different congruences with the same
modulus in a covering. On the other hand, given c, it is also possible that there are no primes p for
which c = ordp(10). In this case, we cannot use the modulus c in (1).
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To clarify, one can check that
2 = ord11(10)

4 = ord101(10)

8 = ord73(10)

8 = ord137(10).

Thus, for a covering of the integers, we may use 2 and 4 each once as the modulus of a congruence
of a covering, and we may use 8 twice as the modulus of a congruence. One checks that

k ≡ 0 (mod 2)

k ≡ 1 (mod 4)

k ≡ 3 (mod 8)

k ≡ 7 (mod 8)

is a covering of the integers. To apply Lemma 1, we take

P2 = {11, 73, 101, 137},

n divisible by 8, and M so that

M ≡ −(2− 1) · 100 (mod 11)

M ≡ −(2− 1) · 101 (mod 101)

M ≡ −(2− 1) · 103 (mod 73)

M ≡ −(2− 1) · 107 (mod 137).

Note that these congruences on M are equivalent to a single congruence modulo 11 · 73 · 101 · 137
by the Chinese Remainder Theorem; in particular, such M exist. We deduce from Lemma 1 that,
under these conditions, the number N (k)(2) is composite for K ≤ k ≤ n− 1.

We write the congruence on M just alluded to above as

M ≡ B(2) (mod 11 · 73 · 101 · 137).

Combining this with our previous results, we have that if

n ≡ 0 (mod 24)

and M is a solution of the system of congruences

M ≡ 7 (mod 3 · 7)

M ≡ B(2) (mod 11 · 73 · 101 · 137),

which we know exists by the Chinese Remainder Theorem, then N (k)(x) will be divisible by at
least one prime in {3, 7, 11, 73, 101, 137} for each x ∈ {0, 1, 2, 3, 6, 8, 9} and K ≤ k ≤ n− 1.
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Observe that to assure that M exists by using the Chinese Remainder Theorem above, we chose
P2 so that it had an empty intersection with the previous sets

P0,P1,P3,P6,P8,P9

already constructed. This will be our strategy then for establishing that the congruences in (2)
simultaneously hold. Thus, we follow the same approach for N (k)(x) when x ∈ {4, 5, 7} as we
did for N (k)(2), but, in each case, the covering of the integers will be more complicated because
we do not wish to repeat using the same primes previously chosen. We list the coverings and the
primes used for x ∈ {4, 5, 7}.

We begin with x = 4. Table 1 contains the needed information for us. To conserve space, we
note here that

p7 = 440334654777631, p14 = 3199044596370769.

row congruence prime pi

1 k ≡ 0 (mod 3) 37
2 k ≡ 1 (mod 6) 13
3 k ≡ 2 (mod 9) 333667
4 k ≡ 5 (mod 18) 19
5 k ≡ 14 (mod 18) 52579
6 k ≡ 8 (mod 27) 757
7 k ≡ 17 (mod 27) p7

row congruence prime pi

8 k ≡ 26 (mod 54) 70541929
9 k ≡ 53 (mod 54) 14175966169

10 k ≡ 4 (mod 12) 9901
11 k ≡ 10 (mod 24) 99990001
12 k ≡ 22 (mod 72) 3169
13 k ≡ 46 (mod 72) 98641
14 k ≡ 70 (mod 72) p14

Table 1: Covering used in Lemma 1 (i) for N (k)(4)

We observe that we are taking P4 to be the set of 14 primes appearing in the columns with the
heading “prime pi”. The congruences in (1) appear in the columns with heading “congruence”.
Thus, if p appears in the column with heading “prime pi”, then the congruence in this same row
takes the form k ≡ b(4, p) (mod c(p)). In each row, one can check directly that ordp(10) = c(p).

We also need to justify that the 14 congruences displayed in Table 1 form a covering. The least
common multiple of the moduli appearing in these congruences is 216. One checks directly (by
hand or computer) that the numbers 0, 1, 2, . . . , 215 each satisfy at least one of the congruences
in the table. Now, suppose that m is an arbitrary integer. Let m′ ∈ {0, 1, . . . , 215} such that
m ≡ m′ (mod 216). We deduce then, since each modulus in the congruences divides 216, that m
is a solution of whatever congruence m′ satisfies. Hence, the verification that the congruences in
Table 1 form a covering is complete.

For x ∈ {5, 7}, we use the same approach as above. We give the tables explicitly but do not
elaborate on the details. We simply note that in each case one should check that the congruence
k ≡ b(x, p) (mod c(p)) and p appearing on a row are such that ordp(10) = c(p). For each
table, one should also check that the congruences form a covering, and this can be done by simply
checking if the non-negative integers up to one less that the least common multiple of the moduli
each satisfy at least one congruence from the table.

For x = 5, we make use of the information in Table 2. To conserve space, we set

p10 = 5964848081, p17 = 4185502830133110721.
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row congruence prime pi

1 k ≡ 0 (mod 5) 41
2 k ≡ 1 (mod 5) 271
3 k ≡ 2 (mod 10) 9091
4 k ≡ 3 (mod 20) 3541
5 k ≡ 13 (mod 20) 27961
6 k ≡ 7 (mod 30) 211
7 k ≡ 17 (mod 30) 241
8 k ≡ 27 (mod 30) 2161
9 k ≡ 8 (mod 40) 1676321

10 k ≡ 28 (mod 40) p10

row congruence prime pi

11 k ≡ 18 (mod 60) 61
12 k ≡ 38 (mod 60) 4188901
13 k ≡ 58 (mod 60) 39526741
14 k ≡ 4 (mod 15) 31
15 k ≡ 9 (mod 15) 2906161
16 k ≡ 14 (mod 45) 238681
17 k ≡ 29 (mod 45) p17

18 k ≡ 44 (mod 90) 29611
19 k ≡ 89 (mod 90) 3762091

Table 2: Covering used in Lemma 1 (i) for N (k)(5)

For x = 7, we use the information in Table 3. We note here that

p11 = 102598800232111471, p13 = 265212793249617641, p14 = 30703738801,

p15 = 625437743071, p16 = 57802050308786191965409441,

p21 = 4458192223320340849, p27 = 127522001020150503761, p31 = 60368344121,

p32 = 848654483879497562821, p34 = 73765755896403138401,

p35 = 11189053009, p36 = 603812429055411913, p37 = 148029423400750506553.

For K ≤ k ≤ n − 1, our argument is complete upon noting that the sets {3, 7}, P2, P4, P5

and P7 are pairwise disjoint. This allows us then to take n so that it is divisible by 6 and each
modulus appearing in (1) independent of the value of x ∈ {2, 4, 5, 7} and also assures that there is
a simultaneous solution to the congruences appearing in (2).

We fix C to be the least common multiple of the moduli appearing in the congruences in (1)
for x ∈ {2, 4, 5, 7}. Note that 6 divides C. Thus, taking

P = {3, 7} ∪ P2 ∪ P4 ∪ P5 ∪ P7,

we see that if n ≡ 0 (mod C), K ≤ k ≤ n− 1 and x ∈ {0, 1, . . . , 9}, then N (k)(x) is divisible by
at least one prime from P .

It is worth noting here that the primes 2 and 5 are not in P . This is done deliberately as
Theorem 1 requires that N be coprime to 10. Combining the congruences appearing in (2) with
the congruence M ≡ 0 (mod 10), for example, allows us to deduce that we can in fact take N
coprime to 10.

For the remainder of this section, we fix M ≡ 0 (mod 10) so that N is coprime to 10 and if
n ≡ 0 (mod C), K ≤ k ≤ n − 1 and x ∈ {0, 1, . . . , 9}, then N (k)(x) is divisible by at least one
prime from P . Fix also some n0 ≡ 0 (mod C). We suppose that n0 satisfies 10n0−2 > M . Then
for n ≥ n0, the number

N =
10n − 1

9
+ M
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row congruence prime pi

1 k ≡ 0 (mod 7) 239
2 k ≡ 1 (mod 7) 4649
3 k ≡ 2 (mod 21) 43
4 k ≡ 9 (mod 21) 1933
5 k ≡ 16 (mod 21) 10838689
6 k ≡ 3 (mod 14) 909091
7 k ≡ 10 (mod 28) 29
8 k ≡ 24 (mod 28) 281
9 k ≡ 4 (mod 35) 71

10 k ≡ 11 (mod 35) 123551
11 k ≡ 18 (mod 35) p11

12 k ≡ 25 (mod 70) 4147571
13 k ≡ 60 (mod 70) p13

14 k ≡ 32 (mod 105) p14

15 k ≡ 67 (mod 105) p15

16 k ≡ 102 (mod 105) p16

17 k ≡ 5 (mod 42) 127
18 k ≡ 26 (mod 42) 2689
19 k ≡ 12 (mod 42) 459691

row congruence prime pi

20 k ≡ 33 (mod 84) 226549
21 k ≡ 75 (mod 84) p21

22 k ≡ 19 (mod 63) 10837
23 k ≡ 40 (mod 63) 23311
24 k ≡ 61 (mod 63) 45613
25 k ≡ 6 (mod 28) 121499449
26 k ≡ 13 (mod 56) 7841
27 k ≡ 41 (mod 56) p27

28 k ≡ 20 (mod 140) 421
29 k ≡ 48 (mod 140) 3471301
30 k ≡ 76 (mod 140) 13489841
31 k ≡ 104 (mod 140) p31

32 k ≡ 132 (mod 140) p32

33 k ≡ 27 (mod 112) 113
34 k ≡ 83 (mod 112) p34

35 k ≡ 55 (mod 168) p35

36 k ≡ 111 (mod 168) p36

37 k ≡ 167 (mod 168) p37

Table 3: Covering used in Lemma 1 (i) for N (k)(7)

has left-most digit 1. More importantly, as M is fixed, the number K is well-defined and does not
vary as n varies over the integers ≥ n0.

There are a finitely many ways, independent of n ≥ n0, to have k ∈ {0, 1, . . . , K − 1} and
x ∈ {0, 1, . . . , 9}. Fix

N0 =
10n0 − 1

9
+ M.

Observe that N0 is coprime to 10. Analogous to our previous notation, we refer to N
(k)
0 (x) as

the number obtained by replacing the digit x ∈ {0, 1, . . . , 9} for the digit of N0 appearing in the
(k + 1)st position on the right. For each k ∈ {0, 1, . . . , K − 1} and x ∈ {0, 1, . . . , 9}, we consider
the least prime q = q(k, x) dividing N

(k)
0 (x). If q > 5, n ≡ n0 (mod c(q)) and n ≥ n0, then q

divides N (k)(x) since

N (k)(x)−N
(k)
0 (x) =

10n − 10n0

9
=

10n0

9

(
10n−n0 − 1

)
.

If q ∈ {2, 5}, then N0 being coprime to 10 implies k = 0. It follows in this case that N (k)(x) =
N (0)(x) is also divisible by q. The definition of n0 implies that if q = 3 and n ≡ n0 (mod 3), then
both n and n0 are divisible by 3 so that 10n−n0 − 1 is divisible by 27. Thus, in this case, we also
have that N (k)(x) is divisible by q.

Set C ′ to be the least common multiple of C and the numbers c(q) where q varies over the
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primes q(k, x) > 5 with 0 ≤ k ≤ K − 1 and x ∈ {0, 1, . . . , 9}. Then we deduce that if

N =
10n − 1

9
+ M,

where
n ≡ n0 (mod C ′),

then N (k)(x) is divisible by the prime q(k, x) provided 0 ≤ k ≤ K − 1 and x ∈ {0, 1, . . . , 9}.
As such n are necessarily divisible by C, we further obtain for such n that N (k)(x) is divisible by
at least one of the primes in P for K ≤ k ≤ n − 1 and x ∈ {0, 1, . . . , 9}. Since the number N
tends to infinity with n and the number of primes q(k, x) as well as the set P are finite, the theorem
follows.

3 Proof of Theorem 2
For a number N ′ = drdr−1 . . . d0 written in base 10 with dr 6= 0 and digit x ∈ {0, 1, . . . , 9}, we

denote by N̂ ′
(k)

(x) the number obtained by inserting the digit x between dk and dk−1. For example,

N̂ ′
(2)

(x) = drdr−1 . . . d3d2xd1d0.

We also define N̂ ′
(0)

(x) as the number obtained by inserting in N ′ the digit x to the right of d0 and

N̂ ′
(r+1)

(x) as the number obtained by inserting in N ′ the digit x to the left of dr. Thus,

N̂ ′
(0)

(x) = drdr−1 . . . d1d0x and N̂ ′
(r+1)

(x) = xdrdr−1 . . . d1d0.

We fix P to be the set of primes from the proof of Theorem 1 and C, M and K as determined
there so that if n ≡ 0 (mod C), then the number

N =
10n − 1

9
+ M

has the property that, for K ≤ k ≤ n − 1, replacing the digit 1 that appears as the (k + 1)st digit
from the right with x ∈ {0, 1, . . . , 9} results in a number N (k)(x) that is divisible by a prime in P .
Setting

N ′ =
10n−1 − 1

9
+ M,

we see that
N̂ ′

(k)
(x) = N (k)(x) for K ≤ k ≤ n− 1.

Observe that, in the notation of the previous paragraph, r = n − 2. Also, N ′ has the property

that if n ≡ 0 (mod C), then the insertion N̂ ′
(k)

(x), for x ∈ {0, 1, . . . , 9} and K ≤ k ≤ n − 1, is
divisible by some prime from the set P . Note that the exponent n − 1 appearing in the definition
of N ′ above is −1 modulo C.

The rest of our argument is analogous to what we did at the end of the previous section. We fix
M so that

N ′ =
10n − 1

9
+ M
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is coprime to 10 and if n ≡ −1 (mod C), K ≤ k ≤ n and x ∈ {0, 1, . . . , 9}, then N̂ ′
(k)

(x) is
divisible by at least one prime from P . Fix also some n0 ≡ −1 (mod C). We suppose that n0

satisfies 10n0−2 > M . Then for n ≥ n0, the number N ′ has left-most digit 1. As M is fixed, the
number K is well-defined and does not vary as n varies over the integers ≥ n0.

There are a finitely many ways, independent of n ≥ n0, to have k ∈ {0, 1, . . . , K − 1} and
x ∈ {0, 1, . . . , 9}. Fix

N ′0 =
10n0 − 1

9
+ M.

Observe that N ′0 is coprime to 10. We refer to N̂ ′0
(k)

(x) as the number obtained by inserting the
digit x ∈ {0, 1, . . . , 9} to the left of the kth digit of N0. For each k ∈ {0, 1, . . . , K − 1} and

x ∈ {0, 1, . . . , 9}, we consider the least prime q = q(k, x) dividing N̂ ′0
(k)

(x). Recall the definition
c(p) = ordp(10), for p a prime, used in the previous section. Observe that if q > 5, n ≡ n0

(mod c(q)) and n ≥ n0, then q divides N̂ ′
(k)

(x) since

N̂ ′
(k)

(x)− N̂ ′0
(k)

(x) =
10n+1 − 10n0+1

9
=

10n0+1

9

(
10n−n0 − 1

)
.

If q ∈ {2, 5}, then N ′0 being coprime to 10 implies k = 0. It follows in this case that N̂ ′
(k)

(x) =

N̂ ′
(0)

(x) is also divisible by q. If q = 3 and n ≡ n0 (mod 3), then n− n0 is divisible by 3 so that

10n−n0 − 1 is divisible by 27. Thus, in this case, we also have that N̂ ′
(k)

(x) is divisible by q.
Set C ′′ to be the least common multiple of C and the numbers c(q) where q varies over the

primes q(k, x) > 5 with 0 ≤ k ≤ K − 1 and x ∈ {0, 1, . . . , 9}. Then we deduce that if

N ′ =
10n − 1

9
+ M,

where
n ≡ n0 (mod C ′′),

then N̂ ′
(k)

(x) is divisible by the prime q(k, x) provided 0 ≤ k ≤ K − 1 and x ∈ {0, 1, . . . , 9}. As

such n are necessarily −1 modulo C, we further obtain for such n that N̂ ′
(k)

(x) is divisible by at
least one of the primes in P for K ≤ k ≤ n and x ∈ {0, 1, . . . , 9}. Since the number N ′ tends to
infinity with n and the number of primes q(k, x) as well as the set P are finite, the theorem follows.

Reference
[1] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factoriza-

tions of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, 3rd edition, Contemporary
Mathematics, Vol. 22, American Math. Soc., Providence, 2002 (available online).

11


